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Intraductian 

XEROX 5 
HlCRWlLn $ The t i t l e  refers to problems 

where the linear &ratom li, $ and the non-necessarily linear operatare 
1 ' 4  

3, 5 
%, $ respectively. 

are defined in a Unear space X and have values i n  two linear spscea 

In Sections 1 and 2 we first discuss same assumptions which allow us 

t o  reduce ( S) t o  a single equation 

1 
i 
i In sections 3 and 4 sane existence cr i ter ia  for  (s), via (T), 

are given. 

A s  an application, a boundary value problem for an ordinary differential 

exuation is considered i n  Sections 5 and 60 
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-roved, as a result of discussions i n  a Seminar given at RIAS i n  February 

1964, 

suggestions and criticisms. 

1. 

the following way: 

particular I am indebted t o  Dr, Jack H a l e  for various helpful 

There are various problems i n  Analysis which can be formulated in 

a d  two (non-necessarily linear) operators 

we want to solve the system of equations 

! 

particular cases of this problem show that it is not unrealistic t o  assume 

one of the two linear operators, say %, maps X onto the whole of XI. 

is equivalent t o  the mothes is  that 

i) \ has a right inverse, L e .  there exists stme linear operator 



such that 

i 

- where I1 i s  the identity operator In %. 

Let us nuw examine the effect of this assumption. Let x be a 
m 

solution of (s), Therefore &X = H,Xj  by i)J %(x - &-%x) = olJ 
-L 6 

where O1 i s  the zero element of X I J  

nullspace of I?. Denotingby $,o 

we shall have $,,y = $,o(x - %%x) 
and since 9 = ft2xt w e  also have 

.y 

= (H2 - L2 

Le.  $,# = K+ with 

k L 

2%)' 

Since y, 5 x  are fixed elements of?%] and % respective- we may w 

some linear operator 

such that; y = 5 x .  Therefore $,o 5 x  = l$x and we conclude that If x 



I 
i 

t 

is a solution of (S) 

of 

then, under the assumption i) it is also a solution 

for  same linear operator k X, +%I,,]. where I, is the identity operator 

i n  5 and O2 is the zero element of s. Conversely if x is a solution 

of (S ) for  sane A, we have %x = %(%x + \%x) = 5- + %%Hlx = 

and $x = %(- + +p) = 5,- + ~&%x = 

- \ -  - 

c h 

Hilt. 
h 

A 

+ 55~p = lp. 

Therefore denoting by C the s e t  of solutions of (S), by C the set 
A 

of solutions of (Si)  and by UAZA the union of the sets ZA for  a l l  the linear 

operators 1\: X2 + qrq1 =ha= 
-3eorem 1: Under the assumpt ion i), c = u~c, .  

Remark 1, If 5, 5 are constant Operators 

then % is also constant 

and we have that, under i), the system 



has solutions if and only if 

s 

for some A, or, equivalently, % - $%% is orthogonal t o  the range d! 

the adjoint operator 

A'$,o - = ($,,A - 5)': 0 

20 Having transformed (S) into (SA) we t r y  t o  reduce (S ) t o  the first 

equation, Therefore we look for those A w h i c h  yield the largest possible 
A 

[I+& - %lo Denoting by %(X) the image of X under I$ we see that, 

for instance, i f  there exists such a A that 

then the second equation i n  (SA) 

t o  solve the first equation of (SA), i.eo 

is an identity so that it will be sufficient 

i n  order t o  have solutions of (s). 



The preceding assumption is equivalent t o  

i 

where 0 is the zero operator i n  X. - 
In  particular th i s  will be satisfied if there exists a A such that 

the zero operator i n  Xp i.e. if $,,A - 5 = 02, 

~f 5 ~qr51  ha^ a riat inveme, %,o - iil)  he restriction 

i.e. there exists a linear ox ra t  or k ~ - ' ~ [ ~ ]  .such#& 

Still more in particular we may assume that 

L2,o - ii") The restriction 

there exists a linear operator 

has an inverse, L e .  



where I, is the identity ape - 
In this case (T) can be w r i t t e n  

and then nat only a solution of (To) is a solution of ( S), but the converse 

i s  also true. In fa& If x is a solution of (S) then y = x - <lip&], 

suarming up we have 

Theorem 2: Under the hypothesis i), if 11) (or ii')) holds, every - - 
solution of (T) i s  also a solution of (8) .  If ii") holds then ( 8 )  is 

e m d e n t  to (T~). 

Remark 2. 

- - 

Since the homogeneous SyStem 

49 = O2 

can be written 



(3) m e a n s  that y = 0 is the unique solution of (So). 

Remark 3. In general, ii") is more restrictive then ii'). If, huwever, 

5 a.ndq[5] are both n-dimensional, then ii') and ii") are act- 
d 

equivalent assumptions, In fact, denoting b y 3  any isomorphism of X,, 
G 

ii') there e x i s C s  A onto? [%I, $,os an endomorphism A u k .  of 52' BY 

l e f t  inverse too, Le. and finally 

such 

E Theorem 2 is a reduction theorem which makes available for ( 8 )  the 

techniques knam for solving the single equation (T). 
-. 

Such techniques, which 

include approxhmtlon methods, fixed point theorems, variational methods, etc. 

(%e f o r  instance, Mm Am Krasnosel'skii [I], [21; 

the linear space X be made into some topological (or even normed) space and that 

some suitable continuity (or even complete continuity) assumptions be imposed 

H. Ehnnann [21) require thst 

on the operator 

T = 9 + (-+< f <)% 

In the next section w e  shall establish some existence criteria for (S) 
A 

assuming, among Others, that X is a subspace of a Banach space X and using 

classical fixed point theorems t o  solve (T). 



Better results could certsinly be obtained by using more sophisticated 

methods, especially if the Banach space 

properties. 

A ,  
X is known to have same a d d i t i d  

For instance if 5 is a constant operator, then (T) is 8 

Hammerstein equation for which a fairly developed theory is now available ii 
A 
X is a Hilbert space (see 1.1 Kolodner, [I], also E. Ehrmann [2]), 

4. The first two existence c r i te r ia  are based on Ewmch*s contractive 

=PPing p-i-0 

Theorem 3. i) ii) hold, and. in addition 

n 
iii) X is a subspace of a Banach space X; %, I$ arebetQ”j ntmned 

spaces; 

iv) A, -+& + 4 are bounded (linear) ogeratw 

that can be extended t o  X In such a xag 
n 

v) %, T$ 

r 
f 

( 5 )  
L 

with - 



. . . .  

I 
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In fact from (k), (5 ) ,  (6) still denoting by T the extension of T to 
h x, it follows 

with a < 1, hence, by Banach's theorem, (T) has one (and only one) 

solution i n  X, btrt; since by (k), T maps X into X, this solution 
A A 

L-l--- A.- 
UGAUrrCSr, UU x d by mer- 2, (s) "m & 1-t s&&iU% 

U s i n g  the last statement of Theorem 2 we have 

The next two criteria are based on Schaud.erls fixed point theoreak 

Theorem 5: - If' i) - iv) hold and if, in addition, 

v i )  HI, can be extended to  fz in  such a way that 

vii) For some hi > 0, . (i = 1, 2) we have 



.~ 
! 

A 
I@ v i )  and (4) the operator T f r o m  I into X Is c w l e t e l y  

cantinuous. Moreover by (4) and (7) 

A 
so that T maps X into a closed ball of X. Schauder's Thearem (T) 

k l l  szl.*iw, hece  (a> hns s o l u t i w  by Theorem 2, 

(7 ' )  

then (S) has solutions. - 
A .  

If we define the two operators I!$, (i = 1,2) 

I 



. ... . .  . .. . , 

i 
I 

j 

j 

t 

A 
then and (-AI& + z>9 apletely continuous, 

has a solution 9. wrt 

hence (8) ,  d a and 1 w i l l  be a solution of (T), L e .  af (S), 

Remark 4, Hone of the preceding theorems requires that % be bounded. 

Remark 5. When 5 and?[%] are both n-dimensional then the existence of 

solutions of (S) under I), li") (Le. under i), lit), see Remark 3) can be 

proved by using Brouwer's fixed point theorem i n  the euclidean n-dimensional 

space, if x = y + %%x has a unique solution for each y E 

H. Ehrmaan, 111). 

- 
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5. 

a general boundary value problem for  an ordinary differential equation 

To illustrate the preceding sections by an example l e t  us consider 

where t is a real variable in  a given campact interval A = [arb] of the 

real l in i e  2, and f(t,u) is an n-vector function of t E 4 u E 9, the 
euclidean n-dimensional space. Beside E? we shall also consider the War . 

s p e s  &A), Ac(A), c(A) and. L1(A) 

are of class 2, 
of n-vector Arnctions *me ccmqponenits 

absolutely contimous, contirnraus or E1ntegrabl.e on 4 

respectiuely. 

The m o s t  general bounded linear operator of C(A) M o  9 is 
represented by 

where F = F(t) is an n x n matrix function of t of bouoded variation on 

A, and the integral is a Riemann-Stieltjes' one. Denoting by h(U) 8 

continuous n-vector function of u E E" we shall associate with (9) the 

"boundary" condition 

JA dEz = h(x) 0 

t 



I -  

I t  
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This is an actua3 boundw condition for  particular F. For instance if 

(-1, for  t = b 

where 1,O are the identity and the zero 

reduces t o  

To interpret (9) (ID) as a problem of type 

n x n matrix, respectiveu,(U)) 

(3) w e  su replace f(t,u) by 

g(t,u) = f'(t,u) - A(t)u, where A(+) is an n X 1). matrix function of t a 4 

so that (9) (lo) msy be wicitten 88 

If f is  continuous we shall assume A (hence g) also continuous and we shall 

look for solutions of (E) i n  the classical sense, x E C?(A). fh this case 

If f is subjected t o  Carathebdory type assumptions, taking a matrix A which 

is Lintegrable on A,.. we sha l l  look for solutions of (E) in  the 
. .  . 



I 

Caratheodory sense, x E AC(A), In this case 

, 

In both cases %, $, HI, 5 are defined by 

A 
and El, 5 can be obviously extended fram X t o  X = ($A). 

The null space [I, ] of % rlll be the space of the solutions y % 
of the hmogeneaus equation 

dy/dt - A(t)y = 0 

If we denote by Y ( t )  any fundamental matrix of this equation we may define 

and we see that % ,  = X, X E 5, 
verified. 

so that the assumption i) of Sedion 1 I s  
.y 

(of course % is no ( l e f i )  inyerse of %, since 
- - 

%%x = x - y, x E X, where G/dt - A(t)g = 0, 3 a )  = 4.)). 



- .  I 

[%I and % = 8 are isomorphic and, denuting by C any 

n x n mat- (si- or not), a l l  the lineas operators A of 5 = 12’ 
into?%] cam be represented by 

A = Y(4j)C . 
Consequently, if we put 

or, more simply 

where G(t,s) I s  a Green matrix defined by 
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The assumption ii) of Section 2 means that for  same 

matrir C 

n x n constant 

If we denote by I# the pseudoinverse matrix of D, which i s  uniquely defined 

bY 

#' = #, (#D)* = #D, d D  = D, (&* = d 

* 
(where denotes the transsose) (see R. Penrose, Pmx. Cambridge philoa. Soc,, 

51, part 3 (3953), 406-413; C. A. Desoer, 'B. H. Whalen, J. SIAM, ll (l963), 

442-447) we see that 

(In fact if x E @.: - 11, i .e. x = m, we b v e  D d x = 

= D#= = DCX = x, i.e. x E - 11)- 
Therefore 



In particular, the assumption ii') (or the equivalent ii")) mew 

that D has a true inverse D-', ana i n  this case 

This case could be c a l l e d  "non-resonant" extending the terminology used for 

the special bauadary value problem of finding the -odic harmonic solutions 

6. If g(t,u) is continuaus for (t,u)c A x I?# both two opemtar8 

Hlx = h(x), 
n 1 

%x = g(t,x) w i l l  map X = C(A) into X = C (A). 
A 

Introducing the uniform norm into X = C(A) this is  a Banach s w e  so 

that  iii) I s  satisfied, 

Since A = Y(t )C  it is readily seen that iv) is also satisfied, TO 

comply w i t h  v) we may assume 

i 
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SUP I d t ) C l  + (b - a) ~1 SUP ]dt,s)l < 1 x2 t E A  t , S E  A 
( 12) 

and this, together with (ll), will insure the existence of at least  ow 

solution of (E) in class $(A), by virtue of Theorem 3. In  the non-resoI1zLTlt 

case, (12) with C replaced by D-', 

such solution, by Theorem 4. 

w i L l  a lso  insure the uniqueness of 

If a(t,.u) is of C-thednq f . ~  t)(pp ue q use p h o m  3 z&? 

Theorem 4 t o  obtain existence and uniqueness criteria for  the solutions of (E) 

i n  class AC(A). (See Go Santagatl, [l]). 

For some applications -of Theorem 5 and 6 t o  the problem (E) we refer 

t o  the work by the present author (a. Conti, [l]) and G. Pulviren.tzL[l]. 

In the non-resonant case the existence of a unique solution of (E) 

i n  class AC(A) 

Lipschitz's ones (See P. Santoro, [l]). 

(E), we  shall mention the work by W. M. Whyburn, [l], [2] and by G. Santagati [I], 

who studied the continuous dependence of the solution of (E) 

can be proved under conditions which are more general than 

To complete our references t o  problem 

on the data 

A, F, h, g. 

i 
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